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Abstract. Different approaches to the theoretical study of the local centres in solids are 
discussed. Particular attention is paid to the embedded-cluster models. There are given the 
mathematical formulation, the computational scheme and applications for some local centres 
on/in graphite monolayers of the moderately large embedded cluster and the large-unit- 
cell-embedded-cluster (LUC-EC) models. It is shown that both models are based on related 
approximations and give comparable results for the centres considered. At the same time 
the LUC-EC scheme is, in practice, realised more easily and enables one to study the charged 
centres. A study of some charged states of adsorbed hydrogen and substitutional boron and 
nitrogen atoms on/in graphite monolayers is used to illustrate the Luc-Ec-model appli- 
cations. 

1. Introduction 

The theory of the electronic structure of local centres in crystalline solids employs a wide 
range of methods and computational schemes (Stoneham 1975). In the one-electron 
approximation this theory has been developed on the basis of one of the following three 
approaches: (1) perturbed crystal model, commonly realised by the Green function 
technique; (2) different cluster models; (3) models of periodic defects. 

As a rule, changes in the perfect-crystal electronic structure caused by the per- 
turbative potential of a defect are of major interest in the theory of local centres in solids. 
Investigations of this type can be undertaken in a consistent way only if the perfect and 
imperfect crystals are considered in the framework of the same computational scheme. 

Quite often a comparative study of the same local centre in different crystalline 
matrices is useful. The computational scheme in this case should be easily transferable 
from one type of solid to another. 

Finally, consideration of charged centres is of great interest due to their increasing 
practical importance. This is the most complicated problem as charged centres are 
usually deep centres with strong potentials of large radii. 

In the charged-centre environment two regions can normally be distinguished. The 
first one is usually referred to as the ‘short-range perturbation’ region. It includes some 
spheres of the nearest neighbours of the defect centre, where the perturbative potential 
is changing in a strong way. The second region is that with the most essential influence 
of long-range polarisation. The defect potential in it is not sufficiently small to be 
neglected, but it changes much more slowly than the host-crystal potential. 

0953-8984/89/376611 + 13 $02.50 @ 1989 IOP Publishing Ltd 6611 



6612 R A  Evarestov et a1 

It is usually assumed that the problem for these two regions can be treated separately: 
for the first region, in the framework of the quantum-chemical approaches mentioned 
above; and for the second region, in the Mott-Littleton (Mott and Littleton 1938) or 
polarised-ions (Tolpygo 1957) approximation. A scheme realising the self-consistent 
consideration of both regions was proposed by Kantorovich (1983). 

The consistent description of the short-range perturbation in region 1 (embedding 
this region into the host crystal) causes the most serious difficulties in the local-centre 
electronic structure calculations. 

In this paper we briefly review the main advantages and drawbacks of the well known 
quantum-chemical approaches (9 2), consider the formulation of two different versions 
of the embedded-cluster approach (93  3 and 4) and compare the results obtained with 
those for some local centres in/on a graphite monolayer (9 5 ) .  

2. The main approaches to local-centre electronic structure theory 

In the framework of the approach using periodic boundary conditions a crystal with a 
single local centre is replaced by a crystal with local centres periodically distributed over 
the lattice. There are known different realisations of such a model: the periodic cluster 
(PC) model (Bennett et a1 1971), the large-unit-cell (LUC) approach (Evarestov et a1 1975, 
Lindefelt 1978, Smith et a1 1985) and the band model (Ermoshkin eta1 1983). In all these 
approaches the period of the defect is usually taken to be as large as possible. This is 
made in order to simulate a single defect by reducing the direct and indirect interactions 
of defects from different cells. 

In fact, large unit cells of the perfect crystal and corresponding primitive cells of 
the periodically perturbed crystal are considered. For the perfect crystal each LUC is 
composed of an integer number ( L )  of primitive unit cells (PUC) of the host crystal. The 
reduced Brillouin zone (RBZ) corresponding to the LUC is L times smaller than the 
Brillouin zone (BZ) constructed for the PUC and each k-point in the RBZ corresponds to 
a family k, k, . . . , k of points of the BZ. 

The LUC k = 0 approximation is widespread in the theory of perfect and imperfect 
solids (Smith et a1 1985). The density matrix of a crystal in the Lucmodel is approximated 
by a sum over the finite set of one-electron states (corresponding to the k = 0 point of 
the RBZ). The accuracy of this approximation depends on the type of crystal under 
investigation and on the choice of size and form of the LUC. 

The LUC model was successfully applied to various types of perfect crystals (insu- 
lators, semiconductors) and non-charged deep centres in them. The applicability of this 
model to point defects in metals has not been investigated till now. 

It is obvious that the model of periodic defects is unrealistic for charged centres since 
the charge of the centre is translated in this model over the whole crystal. 

The most natural theoretical approach in the local-centres theory is the perturbed 
crystal approach based on the one-electron Green function (GF) method (see, for 
example, Pisani et a1 1983). In this approach the Dyson equation for the whole crystal 
Green function is solved (Lannoo and Bourgoin 1981). The Dyson equation connects the 
Green function of the imperfect crystal with that of the perfect one and the perturbative 
potential of the defect. The GF of the perfect crystal is usually calculated from the results 
of preliminary band-structure calculations. The perturbative potential of the defect is 
normally unknown before the problem is solved. That is why its matrix elements are 
usually calculated on the basis of simple semi-empirical schemes. 
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The mathematical formulation of the GF method is straightforward, but its practical 
implementation is accompanied by some serious problems. These problems are the 
following: the complexity of the computational scheme; the necessity of performing 
the preliminary band-structure calculation; and the rapid increase of computational 
difficulties with the increase of the perturbative potential radius. 

That is why the GF method is practically applied mainly in non-self-consistent cal- 
culations of simple local centres of small radius (Pantelides 1978) and also in qualitative 
consideration of oversimplified model centres (Lannoo and Bourgoin 1981). At the 
same time this method is practically useless in calculations of rather complex or charged 
centres (Telezhkin and Tolpygo 1982) if some essential modifications are not made. 

It is the cluster approach that is most commonly used in the local-centres theory. 
This approach is based on the consideration of a comparatively small group of atoms 
(cluster) instead of consideration of the whole crystal. The main attractive features of a 
cluster model are the following: the simplicity of mathematical formulation; the possi- 
bility of direct transfer of computational schemes, worked out in quantum chemistry of 
molecules; and applicability to almost all types of solids and local centres in them. 

At the same time the validity of the results obtained within the cluster approach is 
often questionable due to some serious drawbacks of the approach under discussion. 
Among these drawbacks are: the strong unpredictable influence of the cluster form and 
size on the results of calculations; the difficulties arising when relating the cluster one- 
electron energy levels with the band energies of the perfect crystal; and the appearance 
of ‘pseudo-surface’ states in the one-electron energy spectrum of the cluster. The 
appearance of the pseudo-surface states is accompanied by the unrealistic distortion of 
electronic density on the cluster boundaries and can lead to artefactual resonances 
between the pseudo-surface and the local-centre one-electron states. 

In order to make the cluster model more realistic, a large number of embedding 
schemes have been developed (Zhidomirov et a1 1987). Most of them are oriented on 
special types of crystal (ionic, simple covalent) or are based on the use of special 
approximations in the Hamiltonian operator (local exchange, tight-binding approxi- 
mations). 

The other group of cluster models is based on adding the effective-potential operator 
(the embedding operator) to the unperturbed-cluster Hartree-Fock operator, giving 
the proper one-electron solution for the perfect crystal. When the cluster form and size 
are chosen, this embedding operator can be determined and used in the following 
perturbed-cluster calculations. This so-called embedded-cluster approach is sufficiently 
general and can be applied to different types of solids. The only characteristic that to a 
certain extent depends on the nature of the solid and local centres in it is the minimal 
appropriate cluster size. This size is limited by the extent of localisation of one-electron 
states in the perturbed and non-perturbed solid. At the same time the extent of the 
defect-potential localisation is not so critical if the cluster is chosen in such a way that 
the long-range polarisation outside the cluster can be taken into account as mentioned 
above (for example, as in Kantorovich’s model). 

The embedded-cluster approach was realised in the framework of two different 
models: the moderately large embedded-cluster (MLEC) model (Pisani 1978, Pisani et 
a1 1979, Pisani et a1 1983) and the large-unit-cell-embedded-cluster (LUC-EC) model 
(Sokolov and Evarestov 1984a, b, Plachenov et a1 1986, Evarestov and Verjazov 1987). 
The last was originally called in Russian ‘the cyclically embedded cluster’ but the term 
LUC-EC now seems to be more appropriate. 



6614 R A  Evarestov et a1 

Figure 1. Scheme for the partition of the solid in 
embedded-cluster models. 

3. The moderately large embedded-cluster (MLEC) model 

According to Pisani (1978) we denote by A the defect itself, by B the defect-surrounding 
cluster region and by D the rest of the imperfect solid. The region C = A U B defines 
the embedded cluster (figure 1). Let hA}, kB}, hc}, hD}, be localised basis functions 
(e.g. atomic orbitals) given in the regions A, B, C, D, respectively. The corresponding 
subset of basis functions in the region A of unperturbed crystal (which can be ‘empty’ 
for some types of local centres) is denoted by hA,} and the corresponding subset in the 
region C by kc,}. 

Denoting by Q(e) the energy-dependent inverse of the Green operator G(e) = 
((e + i0)S - F)- l ,  where F ,  S are the Hartree-Fock operator and overlap matrices of 
the solid, respectively, one can write 

QAA QAB QAD GAA GAB GAD 

(QBA QBB QBD ) ~ B A  GBB G B D )  =[: 0 :B 0 I D  ) 
QDA QDB QDD GDA GDB GDD 

Here equation (1) corresponds to the perturbed crystal, and equation (2) to the perturbed 
(but isolated!) cluster. 

The main idea of the MLEC model is to calculate the whole GF submatrix Gc from the 
isolated cluster matrix G, and some submatrices obtained from the perfect-crystal 
calculation. To this purpose, some approximations are introduced. It is supposed that 
the Q and G matrices of the perturbed crystal may be represented in the following form: 

Here f stands for the blocks identical to those in the perfect crystal. 
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The final expression for G was obtained in the MLEC model in two forms. The first 
one appeared as the result of an additional approximation GADQLB = 0 (Pisani 1978): 

The second one was based on using the symmetry of the Gc submatrix without intro- 
ducing any additional approximations (Pisani et aZ1983): 

- 
where CA, = Q i ' .  

In the self-consistent calculations the density matrix Pc of a cluster is to be recal- 
culated at each step of the iterative process. Its direct calculation by integration of the 
GF up to the Fermi level of the perfect crystal is somewhat cumbersome. 

To avoid this integration and to simplify the calculation of the P, matrix, an energy- 
dependent non-symmetric coupling matrix M ( e )  was introduced (Pisani 1978, Pisani et 
a1 1983). Within such an approach the Pc matrix may be represented as the result of 
matrix multiplications, involving the eigenvectors of the embedded-cluster Hartree- 
Fock operator and matrix M ( e ) .  The set of matrices M(e)  for different energies e may 
be calculated if one-electron energies of the perfect crystal are known. No integration 
of the GF at each iteration is needed and the self-consistent determination of the density 
matrixis simplified drastically. As was shown in Pisani (1978), theM(e) function provides 
the correct behaviour for the density matrix when the embedded cluster is enlarged. 
This function differs essentially near the Fermi level from the commonly used step 
function O(e - eF).  

An additional approximation is introduced when using the M(e)  matrix: it is assumed 
that the Fermi level of the perturbed embedded cluster is fixed at the value appropriate 
for the unperturbed solid. This leads to the necessity of adding to the cluster electronic 
subsystem an excess electron or hole charge in order to compensate for the Fermi-level 
shift. The value of the artificial excess charge is adapted to the choice of cluster form and 
size and depends on the strength of the perturbative potential. The consideration of 
singly charged centres (whose charges are not the same as the artificial cluster charge) 
is impossible in the MLEC model. 

The serious drawback of the MLEC model is the complexity of the computational 
scheme. That is the reason why this model has been practically implemented till now 
only for two-dimensional systems (local centres in graphite) and for the simple model 
of a tight-binding cubic metal (Pisani 1978, Pisani et a1 1979, 1983). 

It is obvious that the approximations (3) and (4) used in the MLEC approach lead to 
the following relations: 

F A D  = P A D  = S A D  = 0 

F E D  = FfBD P B D  = PfgD sE3D = (7) 

F D D  = Ff,, PD, = Pf,, s,, = sf,,. 
These approximations are exploited also in the LUC-EC model considered in the next 
section. 
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4. The large-unit-cell-embedded-cluster (LUC-EC) approach 

In the LUC-EC model the crystal is divided into the set of regions {Cj} ( j  = 0, . . . , N - 1) 
and all of these regions are chosen in the form of a LUC of the perfect crystal. The central 
region C = CO = A U B contains the defect with its surrounding, the other regions 
together form the rest of the crystal: 

N - l  

D =  u C j .  
j =  1 

If the approximations (7)  are used, then the Hartree-Fock-Rothaan (HFR) equations 
for the imperfect solid can be written in the following form: 

FAAaA + F A B ~ B  = ~ ( S A A ~ A  + S A B ~ B )  

FBAaA + FBBaB + FfgDa~ = e(SBAaA + SBBaB + SLDaD) (8) 

FfDBaB + FbDaD = e(SbBaB + ShDaD). 

Here aA, aB, aD are the expansion coefficients of molecular orbitals (MO) over the basis 
subsets kA}, kB}, k D }  respectively. 

By solving (8) with respect to aD, eliminating this term and introducing the embedding 
operators Femb, S e m b ,  one can rewrite the embedded-cluster equations in the form: 

[Fcc + FE?b(e)lac = 4Scc + SE:mCb(e)lac (9) 

where 
operators: 

SE?b are the matrix representations of the corresponding embedding 

From the approximation (3) and (4) it follows that the expression in the square 
brackets (let us denote it as KDB(e)) is the same for the perfect and imperfect crystals 
for any energy e. Matrix K(e) connects expansion coefficients ac, with ac: 

ct.c,(e) = Kc,c(e)ac(e). 

For the perfect crystal Bloch's theorem leads to: 

Kf,,,,(e,) = exp(ik.Rj)Zct 

where Zc, is the unit matrix. 
In the LUC k = 0 approximation 

Kf,,,, = IC, for any j # 0. (11) 

For the imperfect crystal in the LUC-EC model the K(e) matrix elements are assumed 
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Figure 2. LUC-EC C,, chosen in the form of 
Wigner-Seitz unit cells centred on a carbon 
atom: 0, carbon atoms lying on the boundaries 
of the LUC-EC. 

to be the same as in the LUC model for the perfect crystal. Taking into account (10) and 
(11) one can get immediately: 

N -  1 

FE?lb(e) = C FLC, 

Sb?lb(4 = C SLC, 

F 5 T ( e )  = F>%b(e) = Fgzb(e) = 0 
/ = 1  
N - 1  (12) 

S.,m,b(e) = SL%b(e) = Sbzb(e) = 0. 
/ = 1  

Finally, for the crystal with a single local centre the HFR equations in the LUC-EC 
scheme are the following: 

F A A ~ A  + F A B ~ A  = ~ ( S A A ~ A  + S A B ~ A )  

It should be mentioned here that the matrix Fcc in (9) and (13) depends on the 
density matrix of the whole crystal (i.e. Fcc is a block of the complete Hamiltonian 
matrix of the whole crystal). In order to calculate the density matrix of the whole 
imperfect solid, first of all the approximations (7) are used. Secondly, in the LUC- 
EC' scheme all matrix elements corresponding to the 'free' (unperturbed) crystal are 
calculated as in the LUC ( k  = 0) model. For atomic orbitals (AO) x$ and ~ ' ( t  centred on 
atoms X E C, and Y E C, this approximation gives (Evarestov and Lovchikov 1979): 

PX"xx; = Pixxy(0) exp[ik.(R$ - R?)] dk = Pfyxx,(0)f(R% - RY) (14) 

where R$ and RY are the radius vectors of the atoms X" and Y" respectively, 
Pixx , (0 )  the matrix element fork = 0 of the density matrix in the Bloch representation. 
The integration in (14) is performed over the reduced Brillouin zone, corresponding to 
the LUC chosen. 

There are some limitations for the choice of the LUC form and size in the LUC-EC 
model: 

(i) All regions Cj are to be chosen in the form of Wigner-Seitz LUC with the defect 
being placed in the centre of the CO region. Some atoms from CO can belong to the 
Wigner-Seitz cell boundary (see figure 2). In this case one needs to use the approximation 
(7) for such atoms as if they belong to the D region. 
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@)The size of the LUC C must be sufficiently large to ensure that the validity of the 
approximations (7) and (14) be acceptable. 

In the limit, when the region CO is the whole crystal and the subset (xD} is empty, the 
lattice sums disappear in (13)  and the LUC-EC model gives the traditional HFR equations 
for a crystal considered as a large molecule. In the other limit, when the defect potential 
is equal to zero and (xA} is empty, the equations (13) transform to the perfect-crystal 
HFR-LUC ( k  = 0) equations. Finally, if the host-crystal potential is rather weak and the 
matrix elements PbD , P b D j ,  FfgD, SbD are negligible, the LUC-EC model gives the same 
equations for the CO region as the simple cluster model does. 

Thus, the introduction of the embedding operator matrices in the form of lattice 
sums (12) gives the proper limiting conditions for the cluster-type HFR equations. 

The proposed LUC-EC model is rather simple in implementation and we have already 
used it for some different types of local centres in ionic (KC1-Sokolov and Evarestov 
1984b; AgC1-Plachenov et al 1986) and covalent (graphite-Sokolov and Evarestov 
1984a) crystals. It was shown that the model can be easily applied for the study of 
different single local centres (charged and neutral) in crystals. 

The drawback of the LUC-EC model is that it does not take into account the polar- 
isation of the crystal in region D by the perturbative potential of the defect. However, 
we suppose that if all limitations on the choice of cluster form and size are satisfied, the 
crystal in region D can be considered as only slightly perturbed by the defect. The 
methods accounting the polarisation in this case are well known and were mentioned in 
D 2 .  They can be used with the LUC-EC model exactly in the same manner as they are 
used with the cluster models (Plachenov et a1 1986). 

The application of the LUC-EC and MLEC models to some local centres in graphite 
and results obtained are discussed in the next section. 

5. Local centres on/in a graphite monolayer in embedded-cluster models 

Different local centres in graphite have been considered in a number of publications 
(see, for example, Bennett et a1 1971, Pisani 1978, Sokoklov and Evarestov 1984a,b, 
Casanas et al l983 and references therein). Various modifications of quantum-chemical 
approaches were used. As a rule, the results obtained for the same centre differ drast- 
ically from one another. 

The main reason for this difference is connected with the following features of the 
graphite electronic band structure. The perfect graphite valence band is composed of 
well localised a-type states and delocalised JT states. The x-electron subsystem is mobile. 
The corresponding valence and conduction sub-bands stick together in one point of the 
Brillouin zone, while the energy gap between the a-valence and a-conduction sub-bands 
is sufficiently large. The balance between a- and x-electron subsystems plays a quite 
important role in the local-centre description, as the response of these two subsystems 
on the defect formation is quite different. Any localised-state energy level in graphite 
falls into one of the allowed energy bands of the perfect crystal. Therefore, all these 
states are resonant in nature. The corresponding one-electron wavefunctions extend far 
from the defect centre and are essentially delocalised over the whole crystal. 

The non-embedded-cluster and periodic-centre models can give poor results for such 
states due to the artificial resonances between the localised and pseudo-surface states 
(in cluster models) or between the states of local centres from different unit cells of 
periodically perturbed solid (in periodic models). 
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In our opinion the GF method and embedded-cluster models are the most appropriate 
for the description of local centres in graphite. The GF method was used in calculations 
of atomic hydrogen adsorption on a graphite monolayer in the framework of the EHT 
(Cohen et a1 1977). As this calculation was based on the z-electron and tight-binding 
approximations, the a-electron subsystem and long-range interactions were not con- 
sidered. This makes the validity of results obtained in Cohen et a1 (1977) questionable. 

The embedded-cluster models were used in the study of local centres on/in a graphite 
monolayer in the framework of the complete neglect of differential overlap (CNDO) 
scheme (Pisani 1978, Pisani et a1 1979, Pisani and Ricca 1980, Sokolov and Evarestov 
1984a,b, Evarestov and Verjazov 1987). 

Pisani’s MLEC calculations were based on the CND0/2 technique (Pople and Beveridge 
1970), and our’s on the CNDO/BW method (Boyd and Whitehead 1972). 

Since the traditional CNDO scheme gives rather poor results for the perfect graphite 
electronic structure, we have modified it (Evarestov et a1 1982). MocXfications involved 
mainly the resonance integrals. The sp2 hybridisation of a-type atomic orbitals was taken 
into account. 

The equations of the CNDO/BW method in the LUC-EC model are the following: 

FC= CE 
MO N - 1  N - 1  M 

F p p  = u p p  + (pA.4 - ipup)Y?A - q B y ? B  - 2 P A A I p  2 sFp - q i y 2 B  
BECo ]=1  ] = 1  BEC, 

N -  1 N-1 

F~~ = -@AB(], + 1,) C s $ ~  - t p p U ~ %  - t pS(y(o)f(R - R ~ J Y ~ B  (15) 
] = O  ] = I  

where p and I, are the indices of AO centred on atoms A and B from the CO region, MO 
the total number of atoms in this region, M the total number of atoms in the jth region 
( j  = 1, . . ., N - l ) ,  YAB the Coulomb integral, P A A ,  P A B ,  UPp the parameters of the 
method, and Zp the total ionisation potential of yth AO. 

In our calculations we have neglected all interactions between atoms that are situated 
at a distance of more than 10 atomic units. Open shells were handled using the half- 
electron method (Dewar et a1 1968). 

The results of calculations for some neutral local centres (adsorbed hydrogen atom, 
single vacancy, substitutional boron and nitrogen impurities on/in a graphite monolayer) 
are given in table 1. By A P A  is denoted the mean deviation of the density matrix of 
imperfect solid from the perfect crystal value: 

112 

ApA = ( l /n> ( ( p p u  - PS(u)’) 
p , u E A  

where n is the number of valence orbitals on atom A. The A P A  value characterises the 
distortion of the electronic density on the corresponding atom by the local-centre 
potential. 

As can be seen from table 1, the net charges on impurity atoms calculated in different 
embedded-cluster models differ in sign. In our opinion, the main reason for this is the 
discrepancy of semi-empirical calculational schemes used (CNDO/Z and modified CNDO/ 

As follows from simple electronegativity considerations a carbon atom accepts 
positive charge being bound with nitrogen atoms and negative charge if it is bound with 

BW). 
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Table 1. MLEC CZ2 and LUC-EC results for local centres h/on a graphite monolayer. 

MLEC LUC-EC 

c 2 2  c24 c 3 2  
Type of Number of 
centre sphere Q, p ,  Q, p ,  Q, Pl 

Hydrogen 

Nitrogen 

Boron 

Vac an c y 

Hads 
0 
1 
2 
3 
4 
5 
6 
7 
8 

NEUbi 
1 
2 
3 
4 
5 
6 
7 
8 

Brubs 
1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 
8 

0.110 - 
0.045 - 
0.020 - 

-0.025 - 

0.005 - 

0.012 
0.078 0.028 

0.004 0.008 

0.002 0.003 

-0.008 0.007 

-0.019 0.008 

-0.138 
-0.035 0.026 

0.009 0.006 

0.005 0.004 
-0.001 0.006 

-0.002 0.003 

-0.151 0.054 
0.052 0.011 

0.024 0.014 
0.013 0.003 

-0.029 0.032 

-0.248 
-0.007 0.044 
-0.021 0.004 

0.074 0.020 
0.048 0.015 

-0.029 0.016 
-0.015 0.010 

0.075 
-0.046 0.019 
-0.028 0.009 

0.022 0.007 
0.051 0.009 

-0.009 0.003 
-0.056 0.013 

-0.153 0.069 
0.016 0.009 
0.069 0.016 
0.035 0.009 

0.018 0.009 
-0.031 0.014 

-0.012 
0.048 0.022 
0.007 0.005 

-0.009 0.001 
-0.008 0.003 

0.004 0.001 
0.010 0.001 

-0.009 0.001 
-0.011 0.001 

0.000 0.001 

-0.117 
0.041 0.016 
0.001 0.002 

-0.005 0.005 
-0.002 0.001 

0.007 0.002 
0.008 0.001 

-0.003 0.002 
-0.012 0.003 

0.085 
-0.064 0.030 

0.004 0.004 
0.020 0.010 
0.004 0.002 

-0.006 0.002 
-0.009 0.002 

0.006 0.003 
0.004 0.003 

-0.032 0.064 
-0.015 0.011 

0.047 0.019 
0.002 0.004 
0.003 0.005 

0.009 0.006 
-0.005 0.004 

-0.005 0.006 

boron atoms hc = 2.5, xN = 3.0, xB = 2.0). Our results for LUC-EC C,, agree well with 
this consideration, contrary to Pisani's results. 

The coincidence of APA values is much better and the results for MLEC are quite often 
intermediate between the results for C24 and C32 LUC-EC. As can be seen from the 
comparison of calculations for Cl3 and C2* quasi-molecules in the MLEC model (Pisani 
1978, Pisani et a1 1979) and for C24 and C3, quasi-molecules in the LUC-EC models, the 
results obtained in both approaches for similar centres become closer to each other when 
cluster size increases. 
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Figure 3. The quasi-local A', level position with 
respect to the Fermi level (Ae = e, - eF) as a func- 
tion of relaxation parameter y .  The y value 

- 0 1  0 0.1 0 2  characterises the shift of the first-sphere atoms 
towards the vacancy site. 

- 7  01 \ 
h c ~ -  

1 1x1 

The following conclusions can be made from our resulks presented in table 1. (i) The 
perturbation of the electronic density of graphite by the local centres considered is 
essential for the first three spheres of atoms surrounding the defect. (ii) The strength 
of this perturbation falls in the order: vacancy > Bsubs > Nsubs > HadS. (iii) The quasi- 
molecule C24 in the LUC-EC model is not sufficiently large to provide the quantitative 
description of centres under consideration. The C32 LUC-EC is sufficiently large for this 
purpose. 

An interesting problem concerning the upper occupied quasi-local vacancy state in 
graphite was posed in Pisani et a1 (1979). According to Zunger and Englman (1978) the 
doubly degenerate singly occupied level of E" symmetry is located quite near the Fermi 
level (EF). It corresponds to n-type crystalline orbitals spatially localised on the atoms 
surrounding the vacant site. Contrary to this Pisani eta1 (1979) found only a well localised 
fully occupied cr level of A; symmetry. The corresponding one-electron energy is 
approximately 5 eV lower than E,. About half of the electronic population of this level 
is associated with three atoms of the first sphere around the vacancy, the rest being 
delocalised over six atoms of the second sphere. 

In our calculations we have obtained the quasi-local occupied level of symmetry 
A;,  located approximately at 5 eV below the Fermi level. The main contribution to the 
electronic density on this level is given by atoms of the first and second spheres (55 and 
15% respectively). 

The shift of the A; level position as a function of lattice relaxation about the vacancy 
is shown on figure 3. The results for the upper occupied quasi-local level obtained in 
both embedded-cluster models are in qualitative agreement. These results disagree with 
those obtained in periodic-cluster calculations of Zunger and Englman (1978). At the 
same time nand aelectronic chargeson the carbon atoms nearest to the vacancy obtained 
by us (3.74 and 0.40 electrons respectively) are in good agreement withzunger's results. 

In order to determine the direction of shift of the first-sphere atoms (towards or away 
from the vacancy site), we have calculated the Wiberg index (Wiberg 1968) for bonds 
towards and away from the vacancy site. For perfect graphite we have obtained the 
values 0.006 and 1.211 for the bonds of a first-sphere atom with its neighbours in this 
sphere and in the second sphere, respectively. In the imperfect crystal the Wiberg index 
increases for a bond across the vacancy site (0.018) and decreases for a bond with a 
second-sphere atom (1.196). This result agrees well with the result obtained on the basis 
of MLEC calculations (Pisani et a1 1979), where the shift towards the vacancy site was 
predicted in contrast with the predictions of Zunger and Englman (1978). 
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Table 2. C,, LUC-EC results for charged local centres in/on a graphite monolayer. 

Total charge of centre 

+1 -1 
Type of Number of 
centre sphere Q, p ,  Q, p ,  

Hydrogen Hads 
0 
1 

2 
3 
4 
5 
6 
7 
8 

Nitrogen Nsubs 
1 
2 
3 
4 
5 
6 
7 
8 

Boron Brubr 
1 
2 
3 
4 
5 
6 
7 
8 

0.063 
0.057 
0.048 

0.049 
0.045 
0.078 
0.019 
0.029 
0.054 

-0.044 

-0.078 
0.094 

0.056 
0.043 
0.091 
0.031 
0.029 
0.032 

0.150 
-0.031 

0.036 
0.083 
0.051 
0.078 
0.012 
0.038 
0.046 

-0.042 

0.032 
0.018 
0.010 
0.012 
0.005 
0,006 
0.002 
0.005 
0.005 

0.021 
0.008 
0.011 
0.005 
0.007 
0.002 
0.004 
0.003 

0.028 
0.007 
0.026 
0.005 
0.007 
0.003 
0.009 
0.008 

-0.076 
0.038 0.014 

0.041 0.008 
-0.043 0.016 

-0.068 0.017 
-0.047 0.012 
-0.083 0.007 
-0.021 0.002 
-0.031 0.006 
-0.042 0.006 

-0.030 
-0.014 0.028 

0.048 0.012 
-0.059 0.020 
-0.046 0.005 
-0.075 0.007 
-0.011 0.004 
-0.032 0.007 
-0.065 0.008 

0.020 

0.043 0.009 
-0.099 0.034 

-0.041 0.008 
-0.042 0.005 
-0.092 0.007 
-0.029 0.003 
-0.024 0.003 
-0.041 0.003 

The Wiberg index is usually considered as the order of the corresponding bond in 
molecules. Its value for the bond between an impurity boron atom and the nearest 
carbon atom (1.096) is much larger than the analogous value for a nitrogen impurity 
(0.617). This result correlates well with the results of Pisani’s calculations and well 
known experimental results of lower stability of nitrogen impurities in comparison with 
boron ones. 

As was pointed out above, the LUC-EC model is applicable to charged centres. For 
C32 LUC-EC we have calculated the electronic structure of some positively and negatively 
charged centres. The values of atomic charges and density matrix deviations obtained 
are given in table 2. 

It can be seen from this table that the excess charge does not cause a drastic distortion 
of the local centre’s structure. Again, as for neutral defects, the local centre consists of 
a strongly perturbed region (including about 3-5 atomic spheres) and the rest of the 
perturbed solid. Of course, the rest of the solid perturbation is larger for charged centres 
than for uncharged ones. 

The excess charge is not localised on the defect or in its neighbourhood, but extends 
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over the whole embedded cluster. This result coincides with the well known semi-metal 
properties of graphite. Note that a smaller deviation of the electronic density has been 
obtained for defects isoelectronic with the carbon atom (NAbs, Bib,)  than for centres of 
opposite charge. 

6. Conclusions 

In this paper we have briefly discussed the advantages and drawbacks of the main 
approaches to local-centre electronic structure theory. Based on this discussion we 
regard the embedded-cluster models as the most appropriate for consideration of various 
local centres in different types of solids. Then we have compared the formulation, 
limitations and approximations behind the moderately large embedded-cluster (MLEC) 
and the large-unit-cell-embedded-cluster (LUC-EC) models. It has been shown that both 
models are close, but the second one is simpler in practical implementation and is 
applicable to charged centres. Finally the results obtained for some local centres on/in 
a graphite monolayer have been discussed. It has been shown that both embedded- 
cluster models give comparable results for neutral centres. Charged centres have been 
considered for the first time in the framework of the LUC-EC model. 
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